Home » News & Blogs » Gravity in the Next Dimension: Micro Black Holes at ATLAS
Bookmark and Share
particlebites

Gravity in the Next Dimension: Micro Black Holes at ATLAS

31 Aug 2016, 14:06 UTC
Gravity in the Next Dimension: Micro Black Holes at ATLAS
(200 words excerpt, click title or image to see full post)

Article: Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt(s)=13 TeV
Authors: The ATLAS Collaboration
Reference: arXiv:1606.02265 [hep-ex]
What would gravity look like if we lived in a 6-dimensional space-time? Models of TeV-scale gravity theorize that the fundamental scale of gravity, MD, is much lower than what’s measured here in our normal, 4-dimensional space-time. If true, this could explain the large difference between the scale of electroweak interactions (order of 100 GeV) and gravity (order of 1016 GeV), an important open question in particle physics. There are several theoretical models to describe these extra dimensions, and they all predict interesting new signatures in the form of non-perturbative gravitational states. One of the coolest examples of such a state is microscopic black holes. Conveniently, this particular signature could be produced and measured at the LHC!
Sounds cool, but how do you actually look for microscopic black holes with a proton-proton collider? Because we don’t have a full theory of quantum gravity (yet), ATLAS researchers made predictions for the production cross-sections of these black holes using semi-classical approximations that are valid when the black hole mass is above MD. This production cross-section ...

Latest Vodcast

Latest Podcast

Advertise PTTU

NASA Picture of the Day

Astronomy Picture of the Day

astronomy_pod