Home » News & Blogs » Snowball Earth: Hydrological Cycle
Bookmark and Share
Beyond Earthly Skies

Snowball Earth: Hydrological Cycle

3 Sep 2013, 22:00 UTC
Snowball Earth: Hydrological Cycle Pierrehumbert et al 2011
(200 words excerpt, click title or image to see full post)

The Earth underwent at least two global glaciation events during the Neoproterozoic era - the Sturtian at ~720 Mya and the Marinoan at ~635 Mya (Pierrehumbert et al., 2011). Other estimates place the two events at ~740 and ~635 Mya respectively (Trindade and Macouin, 2007). These global glaciation events are more commonly known as Snowball Earth events where ice covered the Earth right to the Equator. During a Snowball Earth event, the thick global ice cover effectively eliminates the ocean’s thermal inertia. As a result, the low thermal inertia of the global ice cover resulted in large variations in surface temperature.Figure 1: January surface air temperature for several general circulation model (GCM) simulations of a Snowball Earth with atmospheric CO2 at 2000 ppmv (parts per million by volume). Note that Earth’s pre-industrial atmospheric CO2 concentration is 280 ppmv, January corresponds to winter in the northern hemisphere and 273 K is equal to 0°C. (Pierrehumbert et al., 2011)A sluggish hydrological cycle is expected on a Snowball Earth due to the low temperatures and ice covered ocean. The basic structure of a Snowball Earth hydrological cycle consists of a net ablation zone near the Equator where the annual mean precipitation minus evaporation ...

Latest Vodcast

Latest Podcast

Advertise PTTU

NASA Picture of the Day

Astronomy Picture of the Day

astronomy_pod